The Taxonomy of Data

Types of variables and the data frame

In the beginning was data, and from that data was built an
understanding of the world.

...0r...

In the beginning was understanding, and from that understand-
ing sprung questions that sought to be answered with data.

So, which is it?

This is a philosophical question and it is up for debate. What
is clearer is that in the process of engaging in data science, you
will inevitably find yourself at one of these beginnings, puzzling
over how to make your way to the other one.

Moke o claim

RN

UNDERSTAND DMA

THE WORLD

As\: o. Question
Figure 1: A big-picture view of what the Data Science Lifecycle.

The defining element of data science is the centrality of data as
the means of advancing our understanding of the world. The

word “data” is used in many different ways, so let’s write down
a definition to get everyone on the same page.

Data An item of (chiefly numerical) information, especially one
obtained by scientific work, a number of which are typi-
cally collected together for reference, analysis, or calcula-
tion. From Latin datum: that which is given. Facts.

This broad definition permits a staggering diversity in the forms
that data can take. When you conducted a chemistry experi-
ment in high school and recorded your measurements in a ta-
ble in a lab notebook, that was data. When you registered
for this class and your name showed on CalCentral, that was
data. When the James Webb Space Telescope took a photo of
the distant reaches of our solar system, recording levels of light
pixel-by-pixel, that was data.

Such diversity in data is more precisely described as diversity in
the types of variables that are being measured in a data set.

Variable A characteristic of an object or observational unit that
can be measured and recorded.

In your chemistry notebook you may have recorded the tem-
perature and pressure of a unit of gas, two variables that are
of scientific interest. In the CalCentral data set, name is the
variable that was recorded (on you!) but you can imagine other
variables that the registrars office might have recorded: your
year at Cal, your major, etc. Each of these are called variables
because the value that is measured generally varies as you move
from one object to the next. While your value of the name
variable might be Penelope, if we record the same variable on
another student we’ll likely come up with different value.

A Taxonomy of Data

While the range of variables that we can conceive of is innumer-
able, there are recurring patterns in those variables that allow
us to group them into persistent types that have shared prop-
erties. Such a practice of classification results in a taxonomy,
which has been applied most notably in evolutionary biology
to classify all forms of life.

https://tree.opentreeoflife.org/opentree/argus/opentree13.4@ott93302

Within the realm of data, an analogous taxonomy has
emerged.

| Al \lo\r\,‘\o\e,s‘

Nuwmers, el CoXe 30 fieal

=

Figure 2: the Taxonomy of Data.

Types of Variables

The principle quality of a variable is whether it is numerical or
categorical.

Numerical Variable A variable that take numbers as values
and where the magnitude of the number has a quanti-
tative meaning.

Categorical Variable A variable that take categories as values.
Each unique category is called a level.

When most people think “data” they tend to think about nu-
merical variables (like the temperature and pressure recorded
in your lab notebook) but categorical variables (like the name
recorded on CalCentral) are very common.

All numerical variables can be classified as either continuous or
discrete.

Continuous Numerical Variable A numerical variable that
takes values on an interval of the real number line.

Discrete Numerical Variable A numerical variable that takes
values that have jumps between them.

A good example of a continuous numerical variable is tempera-
ture. If we are measuring outside air temperature on Earth in
Fahrenheit, it is possible that we would record values anywhere
from around -125 degrees F and +135 degrees F. While we
might end up rounding our measurement to the nearest integer
degree, we can imagine that the phenomenon of temperature
itself varies smoothly and continuously across this range.

A good example of a discrete numerical variable is household
size. When the US Census goes door-to-door every year collect-
ing data on every household, they record the number of people
living in that household. A household can have 1 person, or 2
people, or 3 people, or 4 people, and so on, but it cannot have
2.83944 people. This makes it discrete.

What unites both types of numerical variables is that the magni-
tude of the numbers have meaning and you can perform mathe-
matical operations on them and the result also has meaning. It
is possible and meaningful to talk about the average air temper-
ature across three locations. It is also possible and meaningful

to talk about the sum total number of people across ten house-
holds.

The ability to perform mathematical operations drops away
when we move to ordinal variables. All categorical variables
can be classified as either ordinal or nominal.

Ordinal Categorical Variable A categorical variable with lev-
els that have a natural ordering.

Nominal Categorical Variable A categorical variable with lev-
els with no ordering.

You have likely come across ordinal categorical variables if you
have taken an opinion survey. Consider the question:“Do you
strongly agree, agree, feel neutral about, disagree, or strongly
disagree with the following statement: Dogs are better than
cats?” When you record answers to this question, you’re record-
ing measurements on a categorical variable that takes values
“strongly agree”, “agree”, “neutral”, “disagree”, “strongly dis-
agree”. Those are the levels of the categorical variable and they
have a natural ordering: “strongly agree” is closer to “agree”
than it is to “strongly disagree”.

https://en.wikipedia.org/wiki/Lowest_temperature_recorded_on_Earth
https://en.wikipedia.org/wiki/Highest_temperature_recorded_on_Earth

You can contrast this with a nominal categorical variable. Con-
sider a second question that asks (as the registrar does): “What
is your name?” There are many more possible levels in this case
- “Penelope”, “David”, “Shobhana”, etc. - but those levels have
no natural ordering. In fact this is very appropriate example
of a nominal variable because the word itself derives from the
Latin nomen, or “name”.

Let’s take a look at a real data set to see if we can identify the
variables and their types.

Example: Palmer Penguins

Dr. Kristen Gorman is a fisheries and wildlife ecologist at the
University of Alaska, Fairbanks whose work brought her to
Palmer Station, a scientific research station run by the Na-
tional Science Foundation in Antarctica. At Palmer Station,
she took part in a long-term study to build an understanding
of the breeding ecology and population structure of penguins.

Photo: S. Sternbacht

Figure 3: Dr. Gorman recording measurements on penguins
and Palmer Station, a research station in Antarctica.

In order to build her understanding of this community of pen-
guins, she and fellow scientists spent time in the field recording
measurements on a range of variables that capture important
physical characteristics.

Two of the variables that were recorded were bill length and
bill depth'. Each of these capture a dimension of the bill of a
penguin recorded in millimeters These are identifiable as con-
tinuous numerical variables. They’re numerical because the

!Penguin artwork by @allison_ horst.

[Bill deptn

values have quantitative meaning and they’re continuous be-
cause bill sizes don’t come in fixed, standard increments. They
vary continuously.

Another variable that was recorded was the species of the pen-
guin, either “Adelie”, “Gentoo”, or “Chinstrap”. Because these
values are categories, this is a categorical variable. More specif-
ically, it’s a mominal categorical because there is no obvious
natural ordering between these three species.

These are just three of many variables that recorded in the
penguins data set and published along their scientific findings
in the paper, Ecological sexual dimorphism and environmental
variability within a community of Antarctic penguins (genus
Pygoscelis)>. We will return throughout this course to this
data set and this study. It is a prime example of how careful
data collection and careful scientific reasoning can expand our
understanding of a corner of our world about which we know
very little.

Why Types Matter

The Taxonomy of Data is a useful tool of statistics and data
science because it helps guide the manner in which data is
recorded, visualized, and analyzed. Many confusing plots have
been made by not thinking carefully about whether a categori-
cal variable is ordinal or not or by mistaking a continuous nu-
merical variable for a categorical variable. You will get plenty
of practice using this taxonomy to guide your data visualization
in the next unit.

Like many tools built by scientists, though, this taxonomy isn’t
perfect. There are many variables that don’t quite seem to fit
into the taxonomy or that you can argue should fit into multiple
types. That’s usually a sign that something interesting is afoot
and is all the more reason to think carefully about the nature
of the variables and the values it might take before diving into
your analysis.

2Gorman KB, Williams TD, Fraser WR (2014). Ecological sezual dimor-
phism and environmental variability within a community of Antarc-
tic penguins (genus Pygoscelis). PLoS ONE 9(3):e90081. https:
//doi.org/10.1371/journal.pone.0090081

Q\\\N?WAP/

GENTOO/

ADLig

https://doi.org/10.1371/journal.pone.0090081
https://doi.org/10.1371/journal.pone.0090081

A Structure for Data: The Data Frame

When we seek to grow our understanding of a phenomenon,
sometimes we select a single variable that we go out and col-
lect data on. More often, we're dealing with more complex
phenomenon that are characterized by a few, or a few dozen,
or hundreds (or even millions!) of variables. CalCentral has
far more than just your name on file. To capture all of the
complexity of class registration at Cal, it is necessary to record
dozens of variables.

To keep all of this data organized, we need a structure. While
there are several different ways to structure a given data set,
the format that has become most central to data science is the
data frame.

Data Frame An array that associates the observations (downs
the rows) with the variables measured on each observation
(across the columns). Each cell stores a value observed for
a variable on an observation.

While this definition might seem opaque, you are already famil-
iar with a data frame. You are you just more accustomed to
seeing it laid out this like this:

bill_length_ mm | bill_depth_mm | species
43.5 18.1 | Chinstrap
48.1 15.1 | Gentoo
49.0 19.5 | Chinstrap
45.4 18.7 | Chinstrap
34.6 21.1 | Adelie
49.8 17.3 | Chinstrap
40.9 18.9 | Adelie
45.3 13.7 | Gentoo

You might be accustomed to calling this a “spreadsheet” or a
“table”, but the organizational norm of putting the variables
down the columns and the observations across the rows make
this a more specific structure.

One of the first questions that you should address when you
first come across a data frame is to determine what the unit of
observation is.

Unit of Observation The class of object on which the variables
are observed.

In the case of data frame above, the unit of observation is a
single penguin near Palmer Station. The first row captures the
measurements on the first penguin, the second row captures
the measurements of the second penguin, and so on. If I log
into CalCentral to see the data frame that records information
on the students enrolled in this class, the unit of observation is
a single student enrolled in this class.

Not a Data Frame

Before you leave thinking that “data frame” = “spreadsheet”,
consider this data set?:

Handed-
ness Right-handed Left-handed Total
Sex
Male 43 9 52
Female 44 4 48
Total 87 13 100

For it to be a data frame, we would have to read across the
columns and see the names of the variables. You can imag-
ine recording whether or not someone is right-handed or left-
handed, but those variables would take the values “yes” and
“no”, not the counts that we see here. Furthermore, total is
not a variable that we've recorded a single unit; this column
captures aggregate properties of the whole data set.

While this structure might well be called a “table” or possibly a
“spreadsheet”, it doesn’t meet our definition for a data frame.

3An image from the Wikipedia article on contingency tables, https://en
.wikipedia.org/wiki/Contingency__ table.

https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Contingency_table

The Ideas in Code

The concepts of a variable, its type, and the structure of a data
frame are useful because they help guide our thinking about
the nature of a data. But we need more than definitions. If our
goal is to construct a claim with data, we need a tool to aid in
the construction. Our tool must be able to do two things: it
must be able to store the data and it must be able to perform
computations on the data. This is where R comes in!

First, we will discuss how R can store and perform computa-
tions on data. Then, we will relate these basics to the Taxon-
omy of Data we have just discussed.

Saving Objects

Whenever you want to save the output of an R command, add
an assignment arrow <- (less than, minus) as well as a name,
such as “answer” to the left of the command.

answer <- 2 ~ (3 + 1)

When you run this command, there are two things to notice.

1. The word answer appears in the upper right hand corner
of RStudio, in the “Environment” tab.
2. No output is returned at the console.

Every time you run a command, you can ask yourself: do I want
to just see the output at the console or do I want to save it for
later? If the latter, you can always see the contents of what
you saved by just typing its name at the console and pressing
Enter.

answer

[1] 16

There are a few rules around the names that R will allow for the
objects that you're saving. First, while all letters are fair game,
special characters like +, -, /, !, $, are off-limits. Second, names
can contain numbers, but not as the first character. That means
names like answer, a, al2, my_pony, and FO0 will all work. 12a
and my_pony! will not.

But just because I've told you that those names won’t work

doesn’t mean you shouldn’t give it a try...

my_pony! <- 2 = (3 + 1)

Error: <text>:1:8: unexpected '!'
1: my_pony!

This is an example of an error message and, though they can
be alarming, they’re also helpful in coaching you how to correct
your code. Here, it’s telling you that you had an “unexpected
!” and then it points out where in your code that character

popped up.

Creating Vectors

While it is helpful to be able to store a single number as an R
object, to store data sets we’ll need to store a series of numbers.
You can combine multiple values by putting them inside c()
separated by commas.

my_fav_numbers <- c(9, 11, 19, 28)
my_fav_numbers

[1] 9 11 19 28

This is object is called a vector.

Vector (in R) A set of contiguous data values that are of the
same type.

10

As the definition suggests, you can create vectors out of many
different types of data. To store words as data, use the follow-
ing:

my_fav_colors <- c("green", "orange", "purple")
my_fav_colors

[1] "green" '"orange" "purple"

As this example shows, R can store more than just numbers
as data. "green", "orange“, and "purple" are each called
character strings and when combined together with c() they
form a character vector. You can identify a string because it
is wrapped in quotation marks and gets highlighted a different
color in RStudio.

Vectors are often called atomic vectors because, like atoms, they
are the simplest building blocks in the R language. Most of the
objects in R are, at the end of the day, constructed from a series
of vectors.

Functions

While the vector will serve as our atomic method of storing
data in R, how do we perform computations on it? That is the
role of functions.

Let’s use a function to find the arithmetic mean of the vector
my_fav_numbers.

mean (my_fav_numbers)

[1] 16.75

A function in R operates in a very similar manner to functions
that you’re familiar with from mathematics.

In math, you can think of a function, f() as a black box that
takes the input, x, and transforms it to the output, y. You can
think of R functions in a very similar way. For our example
above, we have:

11

INPUT x
v

J(

FUNCTION f:

)L

OUTPUT f(x)

Figure 4: A mathematical function as a box with inputs and
outputs.

e Input: the vector of four numbers that serves as the input
to the function, my_fav_numbers.

e Function: the function name, mean, followed by parenthe-
ses.

e Qutput: the number 16.75.

Functions on Vectors
mean () is just one of thousands of different functions that are

available in R. Most of them are sensibly named, like the fol-
lowing, which compute square roots and natural logarithms.

sqrt (my—fav—numbers) By default, log() computes the
natural log. To use other bases, see
?7log.

[1] 3.000000 3.316625 4.358899 5.291503

log(my_fav_numbers)

[1] 2.197225 2.397895 2.944439 3.332205

12

Note that with these two functions, the input was a vector of
length four and the output is a vector of length four. This is
a distinctive aspect of the R language and it is helpful because
it allows you to perform many separate operations (taking the
square root of four numbers, one by one) with just a single
command.

The Taxonomy of Data in R

In the last lecture notes, we introduced the Taxonomy of Data
as a broad system to classify the different types of variables
on which we can collect data. If you recall, a variable is a
characteristic of an object that you can measure and record.
When Dr. Gorman walked up to her first penguin (the unit of
observation) and measured its bill length, she collected a single
observation of the variable bill_length_mm. You could record
that in R using,

bill_length_mm <- 50.7

She continued on to measure the next penguin, then the next,
then the next... Instead of recording these as separate objects,
it is more efficient to store them as a vector.

bill_length mm <- c(50.7, 48.5, 52.8, 44.5, 42.0, 46

This example shows that

A vector in R is a natural way to store observations
on a variable.

S0 in the same way that we have asked, “what is the type of that
variable?” we can now ask “what is the class of that variable
in R?”.

Class (R) A collection of objects, often vectors, that share sim-
ilar attributes and behaviors.

13

.9, 50.2, 37.9)

While there are many classes in R, you can get a long way
only knowing three. The first is represented by our vector
my_fav_numbers. Let’s check it’s class using the class () func-
tion.

class(my_fav_numbers)

[1] "numeric"

Here we learn that my_fav_numbers is a numeric vector. Nu-
meric vectors, as the name suggests, are composed only of num-
bers and can include measurements from both discrete and con-
tinuous numerical variables.

What about my_fav_colors?

class(my_fav_colors)

[1] "character"

R stores that as a character vector. This is a very flexible class
that can be used to store text as data. But what if there are
only a few fixed values that a variable can take? In that case,
you can do better than a character vector by usinggit a factor.
Factor is a very useful class in R because it encodes the notion
of levels discussed in the last notes.

To illustrate the difference, let’s make a character vector but
then enrich it by turning it into a factor using factor().

char_vec <- c("cat", "cat", "dog")
fac <- factor(char_vec)
char_vec

[1] IICatll "Cat" lldogﬂ

fac

14

[1] cat cat dog
Levels: cat dog

The original character vector stores the same three strings that

we used as input. The factor adds some additional information:

the possible values that this vector can take.

This is particularly useful when you want to let R know that
these levels have a natural ordering. If you have strong opinions
about the relative merit of dogs over cats, you could specify that
using;:

ordered_fac <- factor(char_vec, levels = c("dog", "cat"))

ordered_fac

[1] cat cat dog
Levels: dog cat

While this doesn’t change the way the levels are ordered in the
vector itself, it will effect the way they behave when we use
them to create plots, as we’ll do in the next set of notes.

These three vector classes do a good job of putting into flesh
and bone (or at least silicon) the abstract types captured in the
Taxonomy of Data.

| AU Vasiables |

N umerh u\ Cofe soﬁ (.A\

/ \ \.03} cal \
Cortinvovs Discrdte
N, 1

numeric O"AE."CA 'F&O\'OP c,\f\o.('o.r_‘\'gr

or
'C’o&'\'o «

Figure 5: The Taxonomy of Data with equivalent classes in R.

15

This example also demonstrates that
you can create a (character) vector
inside a function.

Data Frames in R

While vectors in R do a great job of capturing the notion of a
variable, we will need more than that if we’re going to represent
something like a data frame. Conveniently enough, R has a
structure well-suited to this task called...(drumroll...)

Dataframe (R) A two dimensional data structure used to store
vectors of the same length. A direct analog of the data

frame defined previously*.

Let’s use R to recreate the penguins data frame collected by

Dr. Gorman.

bill_length_ mm | bill_depth__mm | species
43.5 18.1 | Chinstrap
48.1 15.1 | Gentoo
49.0 19.5 | Chinstrap
45.4 18.7 | Chinstrap
34.6 21.1 | Adelie
49.8 17.3 | Chinstrap
40.9 18.9 | Adelie
45.3 13.7 | Gentoo

Creating a data frame

In the data frame above, there are three variables; the first two
numeric continuous, the last one categorical nominal. Since R
stores variables as vectors, we’ll need to create three vectors.

bill_length mm <- c(50.7, 48.5, 52.8, 44.5, 42.0, 46.9, 50.2, 37.9)
bill_depth_mm <- c(19.7, 15.0, 20.0, 15.7, 20.2, 16.6, 18.7, 18.6)
species <- factor(c("Chinstrap", "Gentoo", "Chinstrap", "Gentoo", "Adelie",

"Chinstrap", "Chinstrap", "Adelie"))

While bill_length_mm and bill_depth_mm are both being
stored as numeric vectors, species was first collected into a

4R is an unusual language in that the data frame has been for decades a
core structure of the language. The analogous structure in Python is

the data frame found in the Pandas library.

16

Check the class of these vectors by
using the as input to class().

character vector, then passed directly to the factor () function.
This is an example of nesting one function inside of another and
it combined two lines of code into one.

With the three vectors stored in the Environment, all you need
to do is staple them together with data.frame().

penguins_df <- data.frame(bill_length mm, bill_depth_mm, species)
penguins_df

bill_length_mm bill_depth_mm species

1 50.7 19.7 Chinstrap
2 48.5 15.0 Gentoo
3 52.8 20.0 Chinstrap
4 44.5 15.7 Gentoo
5 42.0 20.2 Adelie
6 46.9 16.6 Chinstrap
7 50.2 18.7 Chinstrap
8 37.9 18.6 Adelie
Summary

In this lecture note we have focused on the nature of the data
that will serve as the currency from which we’ll construct an
improved understanding of the world. A first step is to identify
the characteristics of the variables that are being measured and
determine their type within the Taxonomy of Data. A second
step is to organize them into a data frame to clearly associate
the value that is measured for a variable with a particular ob-
servational unit.

With these ideas in hand, we learned how to bring data onto our
computer, so that in our next class, we can begin the process
of identifying its structure and communicating that structure
numerically and visually.

17

	A Taxonomy of Data
	Types of Variables
	Example: Palmer Penguins
	Why Types Matter

	A Structure for Data: The Data Frame
	Not a Data Frame

	The Ideas in Code
	Saving Objects
	Creating Vectors
	Functions
	Functions on Vectors
	The Taxonomy of Data in R
	Data Frames in R
	Creating a data frame

	Summary

