Hypothesis Testing

Measuring the consistency between a model and data

Classical statistics features two primary methods for using a
sample of data to make an inference about a more general pro-
cess. The first is the confidence interval, which expresses the
uncertainty in an estimate of a population parameter. The sec-
ond classical method of generalization is the hypothesis test.

The hypothesis test takes a more active approach to reason-
ing: it posits a specific explanation for how the data could be
generated, then evaluates whether or not the observed data is
consistent with that model. The hypothesis test is one of the
most common statistical tools in the social and natural sciences,
but the reasoning involved can be counter-intuitive. Let’s in-
troduce the logic of a hypothesis test by looking at another
criminal case that drew statisticians into the mix.



Example: The United States vs Kristen Gilbert

In 1989, fresh out of nursing school, Kristen Gilbert got a job
at the VA Medical Center in Northampton, Massachusetts, not
far from where she grew up'. Within a few years, she became
admired for her skill and competence.

Gilbert’s skill was on display whenever a “code blue” alarm
was sounded. This alarm indicates that a patient has gone into
cardiac arrest and must be addressed quickly by administering
a shot of epinephrine to restart the heart. Gilbert developed
for a reputation for her steady hand in these crises.

By the mid-1990s, however, the other nurses started to grow
suspicious. There seemed to be a few too many code blues,
and a few too many deaths, during Gilbert’s shifts. The staff
brought their concerns to the VA administration, who brought
in a statistician to evaluate the data.

IThis case study appears in Statistics in the Courtroom: United States v.
Kristen Gilbert by Cobb and Gelbach, published in Statistics: A Guide
to the Unknown by Peck et. al.



The Data

The data that the VA provided to the statistician contained
the number of deaths at the medical center over the previous
10 years, broken out by the three shifts of the days: night,
daytime, and evening. As part of the process of exploratory
data analysis, the statistician constructed a plot.
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This visualization reveals several striking trends. Between 1990
and 1995, there were dramatically more deaths than the years
before and after that interval. Within that time span, it was
the evening shift that had most of the deaths. The exception is
1990, when the night and daytime shifts had the most deaths.

So when was Gilbert working? She began working in this part
of the hospital in March 1990 and stopped working in February

1996. Her shifts throughout that time span? The evening shifts.

The one exception was 1990, when she was assigned to work the
night shift.




This evidence is compelling in establishing an association be-
tween Gilbert and the increase in deaths. When the district
attorney brought a case against Gilbert in court, this was the
first line of evidence they provided. In a trial, however, there
is a high burden of proof.

Could there be an alternative explanation for the trend found
in this data?

The role of random chance

Suppose for a moment that the occurrence of deaths at the
hospital had nothing to do with Gilbert being on shift. In that
case we would expect that the proportion of shifts with a death
would be fairly similar when comparing shifts where Gilbert
was working and shifts where she was not. But we wouldn’t
expect those proportions to be exactly equal. It’s reasonable
to think that a slightly higher proportion of Gilbert’s shifts
could have had a death just due to random chance, not due to
anything malicious on her part.

So just how different were these proportions in the data? The
plot above shows data from 1,641 individual shifts, on which
three different variables were recorded: the shift number,
whether or not there was a death on the shift, and whether or
not Gilbert was working that shift.

Here are the first 10 observations.

# A tibble: 1,641 x 3

shift death staff

<dbl> <chr> <chr>
626 no no_gilbert
590 no no_gilbert
1209 no no_gilbert
1122 no no_gilbert
622 no no_gilbert
1536 no no_gilbert
1472 no no_gilbert
214 no gilbert
277 yes no_gilbert
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10 1332 no no_gilbert
# i 1,631 more rows

Using this data frame, we can calculate the sample proportion
of shifts where Gilbert was working (257) that had a death (40)
and compare them to the sample proportion of shifts where
Gilbert was not working (1384) that had a death (34).

40 34

i)gilbm“t 71A)no_gilbe7”t = ﬁ - @ =.155—.024 = .131

A difference of .131 seems dramatic, but is that within the
bounds of what we might expect just due to chance? One
way to address this question is to phrase it as: if in fact the
probability of a death on a given shift is independent of whether
or not Gilbert is on the shift, what values would we expect for
the difference in observed proportions?

We can answer this question by using simulation. To a simulate
a world in which deaths are independent of Gilbert, we can

1. Shuffle (or permute) the values in the death variable in
the data frame to break the link between that variable
and the staff variable.

2. Calculate the resulting difference in proportion of deaths
in each group.

The rationale for shuffling values in one of the columns is that if
in fact those two columns are independent of one another, then
it was just random chance that led to a value of one variable
landing in the same row as the value of the other variable. It
could just as well have been a different pairing. Shuffling cap-
tures another example of the arbitrary pairings that we could
have observed if the two variables were independent of one an-
other?.

By repeating steps 1 and 2 many many times, we can build
up the full distribution of the values that this difference in
proportions could take.

2The technical notion that motivates the use of shuffling is a slightly more
general notion than independence called exchangability. The distinction
between these two related concepts is a topic in a course in probability.

A note on notation: it’s common to
use p (“p hat”) to indicate that a
proportion has been computed from
a sample of data.
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As expected, in a world where these two variables are indepen-
dent of one another, we would expect a difference in propor-
tions around zero. Sometimes, however, that statistic might
reach values of +/- .01 or .02 or rarely .03. In the 500 sim-
ulated statistics shown above, however, none of them reached
beyond +/- .06.

So if that’s the range of statistics we would expect in a world
where random chance is the only mechanism driving the dif-
ference in proportions, how does it compare to the world that
we actually observed? The statistic that we observed in the
data was .131, more than twice the value of the most extreme
statistic observed above.

To put that into perspective, we can plot the observed statistic
as a vertical line on the same plot.
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The method used above shows that the chance of observing a
difference of .131 is incredibly unlikely if in fact deaths were
independent of Gilbert being on shift. On this point, the statis-
ticians on the case agreed that they could rule out random
chance as an explanation for this difference. Something else
must have been happening.

Elements of a Hypothesis Test

The logic used by the statisticians in the Gilbert case is an
example of a hypothesis test. There are a few key components
common to every hypothesis test, so we’ll lay them out one-by-
one.

A hypothesis test begins with the assertion of a null hypothe-
sis.

Null Hypothesis A description of the chance process for gener-
ating data. Sometimes referred to as H, (“H naught”).

It is common for the null hypothesis to be that nothing inter-
esting is happening or that it is business as usual, a hypothesis
that statisticians try to refute with data. In Gilbert case, this
could be described as “The occurrence of a death is indepen-
dence of the presence of Gilbert” or “The probability of death
is the same whether or not Gilbert is on shift” or “The differ-
ence in the probability of death is zero, when comparing shifts
where Gilbert is present to shifts where Gilbert is not present”.
Importantly, the null model describes a possible state of the
world, therefore the latter two versions are framed in terms
of parameters (p for proportions) instead of observed statistics
(p)-

The hypothesis that something indeed is going on is usually
framed as the alternative hypothesis.

Alternative Hypothesis The assertion that a mechanism other
than the null hypothesis generated the data. Sometimes
referred to as H, (“H A).



In the Gilbert case, the corresponding alternative hypothesis is
that there is “The occurrence of a death is dependent on the
presence of Gilbert” or “The probability of death is different
whether or not Gilbert is on shift” or “The difference in the
probability of death is non-zero, when comparing shifts where
Gilbert is present to shifts where Gilbert is not present”

In order to determine whether the observed data is consistent
with the null hypothesis, it is necessary to compress the data
down into a single statistic.

Test Statistic A numerical summary of the observed data that
bears on the null hypothesis. Under the null hypothesis
it has a sampling distribution (also called a “Null Distri-
bution”).

In Gilbert’s case, a difference in two proportions, p; — p, is a
natural test statistic and the observed test statistic was .131.

It’s not enough, though, to just compute the observed statistic.
We need to know how likely this statistic would be in a world
where the null hypothesis is true. This probability is captured
in the notion of a p-value.

p-value The probability of a test statistic as rare or even more
rare than the one observed under the assumptions of the
null hypothesis.

If the p-value is high, then the data is consistent with the null
hypothesis. If the p-value is very low, however, there the statis-
tic that was observed would be very unlikely in a world where
the null hypothesis was true. As a consequence, the null hy-
pothesis can be rejected as reasonable model for the data.

The p-value can be estimated using the proportion of statistics
from the simulated null distribution that are as or more extreme
than the observed statistic. In the simulation for the Gilbert
case, there were 0 statistics greater than .131, so the estimated
p-value is zero.



What a p-value is not

The p-value has been called the most used as well as the most
abused tool in statistics. Here are three common misinterpre-
tations to be wary of.

1. The p-value is the probability that the null hypothesis is
true (FALSE!)

This is one of the most common confusions about p-values.
Graphically, a p-value corresponds to the area in the tail
of the null distribution that is more extreme than the
observed test statistic. That null distribution can only
be created if you assume that the null hypothesis is true.
The p-value is fundamentally a conditional probability of
observing the statistic (or more extreme) given the null
hypothesis is true. It is flawed reasoning to start with an
assumption that the null hypothesis is true and arrive at
a probability of that same assumption.

2. A very high p-value suggests that the null hypothesis is
true (FALSE!)

This interpretation is related to the first one but can lead
to particularly wrongheaded decisions. One way to keep
your interpretation of a p-value straight is to recall the
distinction made in the US court system. A trial proceeds
under the assumption that the defendant is innocent. The
prosecution presents evidence of guilt. If the evidence is
convincing the jury will render a verdict of “guilty”. If the
evidence is not-convincing (that is, the p-value is high)
then the jury will render a verdict of “not guilty” - not a
verdict of “innocent”.

Imagine a setting where the prosecution has presented
no evidence at all. That by no means indicates that the
defendant is innocent, just that there was insufficient ev-
idence to establish guilt.

3. The p-value is the probability of the data (FALSE!)

This statement has a semblance of truth to it but is miss-
ing an important qualifier. The probability is calculated



based on the null distribution, which requires the assump-
tion that the null hypothesis is true. It’s also not quite
specific enough. Most often p-values are calculated as
probabilities of test statistics, not probabilities of the full
data sets.

Another more basic check on your understanding of a p-value:
a p-value is a (conditional) probability, therefore it must be-
tween a number between 0 and 1. If you ever find yourself
computing a p-value of -6 or 3.2, be sure to pause and revisit
your calculations!

One test, many variations

The hypothesis testing framework laid out above is far more
general than just this particular example from the case of Kris-
ten Gilbert where we computed a difference in proportions and
used shuffling (aka permutation) to build the null distribution.
Below are just a few different research questions that could be
addressed using a hypothesis test.

« Pollsters have surveyed a sample of 200 voters ahead of an
election to assess their relative support for the Republican
and Democratic candidate. The observed difference in
those proportions is .02. Is this consistent with the notion
of evenly split support for the two candidates, or is one
decidedly in the lead?

e Brewers have tapped 7 barrels of beer and measured the
average level of a compound related to the acidity of the
beer as 610 parts per million. The acceptable level for
this compound is 500 parts per million. Is this average
of 610 consistent with the notion that the average of the
whole batch of beer (many hundreds of barrels) is at the
acceptable level of this compound?

e A random sample of 40 users of a food delivery app were
randomly assigned two different versions of a menu where
they entered the amount of their tip: one with the tip
amount in ascending order, the other in descending or-
der. The average tip amount of those with the menu in
ascending order was found to be $3.87 while the average
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tip of the users in the descending order group was $3.96.
Could this difference in averages be explained by chance?

Although the contexts of these problems are very different, as
are the types of statistics they’ve calculated, they can still be
characterized as a hypothesis test by asking the following ques-
tions:

1. What is the null hypothesis used by the researchers?

2. What is the value of the observed test statistic?

3. How did researchers approximate the null distribution?
4

. What was the p-value, what does it tell us and what does
it not tell us?

Summary

In classical statistics there are two primary tools for assessing
the role that random variability plays in the data that you
have observed. The first is the confidence interval, which quan-
tifies the amount of uncertainty in a point estimate due to the
variability inherent in drawing a small random sample from a
population. The second is the hypothesis test, which postings
a specific model by which the data could be generated, then as-
sesses the degree to which the observed data is consistent with
that model.

The hypothesis test begins with the assertion of a null hypoth-
esis that describes a chance mechanism for generating data. A
test statistic is then selected that corresponds to that null hy-
pothesis. From there, the sampling distribution of that statistic
under the null hypothesis is approximated through a computa-
tional method (such as using permutation, as shown here) or
one rooted in probability theory (such as the Central Limit
Theorem). The final result of the hypothesis test procedure
is the p-value, which is approximated as the proportion of the
null distribution that is as or more extreme than the observed
test statistic. The p-value measures the consistency between
the null hypothesis and the observed test statistic and should
be interpreted carefully.
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A postscript on the case of Kristen Gilbert. Although the hy-
pothesis test ruled out random chance as the reason for the
spike in deaths under her watch, it didn’t rule out other po-
tential causes for that spike. It’s possible, after all, that the
nightshifts that Gilbert was working happen to be the time of
day when cardiac arrests are more common. For this reason,
the statistical evidence was never presented to the jury, but
the jury nonetheless found her guilty based on other evidence
presented in the trial.

The ldeas in Code

A hypothesis test using permutation can be implemented by
introducing one new step into the process used for calculating
a bootstrap interval. The key distinction is that in a hypothesis
test the researchers puts forth a model for how the data could
be generated. That is the role of hypothesize().

=

hypothesize()

A function to place before generate() in an infer pipeline
where you can specify a null model under which to generate
data. The one necessary argument is

12



e null: the null hypothesis. Options include "independence"
and "point".

The following example implements a permutation test under
the null hypothesis that there is no relationship between the
body mass of penguins and their

library(tidyverse)
library(stat20data)
library(infer)

penguins |>
specify(response = body_mass_g,
explanatory = sex) |>
hypothesize(null = "independence")

Response: body_mass_g (numeric)
Explanatory: sex (factor)
Null Hypothesis: independence
# A tibble: 333 x 2
body_mass_g sex

<dbl> <fct>

3750 male

3800 female

3250 female

3450 female

3650 male

3625 female

4675 male

3200 female

3800 male
10 4400 male
# i 323 more rows
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Observe:

e The output is the original data frame with new informa-
tion appended to describe what the null hypothesis is for
this data set.
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e There are other forms of hypothesis tests that you will
see involving a "point" null hypothesis. Those require
adding additional arguments to hypothesize().

Calculating an observed statistic

Let’s say for this example you select as your test statistic a dif-
ference in means, T f.,,,q7c — Tppare- While you can use tools you
know - group_by () and summarize () to calculate this statistic,
you can also recycle much of the code that you’ll use to build
the null distribution with infer.

obs_stat <- penguins |[>
specify(response = body_mass_g,
explanatory = sex) |[>
calculate(stat = "diff in means")

obs_stat

Response: body_mass_g (numeric)
Explanatory: sex (factor)
# A tibble: 1 x 1
stat
<dbl>
1 -683.

Calculating the null distribution

To generate a null distribution of the kind of differences in
means that you’d observe in a world where body mass had noth-
ing to do with sex, just add the hypothesis with hypothesize ()
and the generation mechanism with generate().

null <- penguins |>
specify(response = body_mass_g,
explanatory = sex) |[>
hypothesize(null = "independence") |>
generate(reps = 500, type = "permute") [>
calculate(stat = "diff in means")
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null

Response: body_mass_g (numeric)
Explanatory: sex (factor)
Null Hypothesis: independence
# A tibble: 500 x 2

replicate stat

<int> <dbl>

1 -59.9
2 -125.
3 68.9
4 37.1
5 129.
6 36.
7 -7.08
8 60.
9 -16.
10 -63.
# i 490 more rows
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Observe:

e The output data frame has reps rows and 2 columns: one
indicating the replicate and the other with the statistic
(a difference in means).
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